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We present new humerical models for computing transitional or rarefied gas flows
as described by the Boltzmann-BGK and BGK-ES equations. We first propose a new
discrete-velocity model, based on the entropy minimization principle. This model
satisfies the conservation laws and the entropy dissipation. Moreover, the problem
of conservation and entropy for axisymmetric flows is investigated. We find alge-
braic relations that must be satisfied by the discretization of the velocity derivative
appearing in the transport operator. Then we propose some models that satisfy these
constraints. Owing to these properties, we obtain numerical schemes that are eco-
nomic, in terms of discretization, and robust. In particular, we develop a linearized
implicit scheme for computing stationary solutions of the discrete-velocity BGK and
BGK-ES models. This scheme is the basis of a code which can compute high altitude
hypersonic flows, in 2D plane and axisymmetric geometries. Our results are analyzed
and compared to other methodse 2000 Academic Press

Key WordsBoltzmann equation; BGK model; discrete-velocity models; axisym-
metric flows; implicit schemes; conservative and entropic methods.

1. INTRODUCTION

For the simulation of gas flows in rarefied or transitional regimes, there mainly exist t
classes of methods. The first one is a probabilistic approach, such as the classical c
simulation Monte Carlo method (DSMC). The second approach is called deterministic
consists in numerically solving the kinetic equation, namely the Boltzmann equation.

The DSMC method is the most often used in engineering applications. But due to
particular nature, this method is still expensive for some flows like recirculation probler
or near continuum flows. However, it is worth mentioning the recent approach of Pares
and Caflisch [28] that proposes a modification of DSMC to correct this problem. B
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the probabilistic nature of DSMC also leads to noise charged solutions. The determini
approaches are more accurate (see Rogier and Schneider [30], Buet [11], and Ohwada |
but they are very expensive in terms of computational time, especially due to to the quadr
cost of the velocity discretization of the collision operator.

A reduction of this cost can be obtained by considering simplified models of the Bol
mann equation, like the Bathnagar—Gross—Krook model (BGK)

0 +v- Vi = Z(M[F] = ).
T

This model [5] is known to be sufficient for numerous situations, even in some cases wt
the gas is far from equilibrium (see [18]). Some drawbacks of this model, such as
incorrect value of the Prandtl number, can be corrected by modified models. A lot of wol
have been devoted to numerical approximations of the BGK equation, essentially by
discrete-ordinate method (see Yang and Huang [36] and&t@ii[3] and their references),
but also by particle methods (see Issautier [20]). However, to our knowledge, none of th
methods satisfy at the discrete level the macroscopic properties known as conservation
and dissipation of entropy.

In this work, we are essentially concerned with developing numerical methods that
conservative and entropic. For that reason, this paper presents three distinct points.
we present a robust velocity discretization of the BGK and BGK-ellipsoidal-statistic
(BGK-ES) collision operators. Then the velocity discretization of the transport operator
considered, especially for cylindrical coordinates. These two points give us discrete-velo
models of BGK and BGK-ES equations that are discretized in space and time in the last pc

For the velocity discretization of the BGK collision operator, the main problem is th
approximation of the Maxwellian distribution. Many works use precise quadratures
Gauss—Hermite type (see [3, 36]), but despite the accuracy of their quadratures, these r
ods lack the properties of conservation and dissipation of entropy. This makes necess:
fine velocity mesh to ensure robust algorithms, which then are expensive. We have prop
in [26] a method based on an entropy minimization principle, which gives a conservat
and entropic discrete BGK collision operator. Here, we advance the work of [26] and g
eralize the method to the BGK-ES operator. This allows us to reach correct Prandtl nun
in the hydrodynamic limit.

The velocity discretization of the transport operator is trivial in Cartesian coordinate
but not in cylindrical coordinates. In fact, the cylindrical description yields inertia tern
that are velocity derivatives of the distribution function. This problem is important to sin
ulate axisymmetric flows, but to our knowledge, few articles exist about the numeric
approximation of this operator. One of the first works is due to Bergers in [6] (see al
his references). He approximates the inertia terms by assuming that they are equal to
given by a Maxwellian distribution. However, this assumption is not valid for strong kinet
nonequilibrium, as with strong shock waves normal to the radial direction. In the works
Shakhov [31], Sonet al.[35], and Larina and Rykov [22], the inertia terms are directly
discretized, but one or all the properties of positivity, conservation, and entropy are Ic
Consequently, these methods may lack robustness and are restricted to simple 1D o
axisymmetric flows such as in circular pipes or between two coaxial cylinders.

Here we follow the same velocity discretization approach of the previous authors but
put in evidence the properties that should be satisfied by the discrete inertia terms so
ensure conservation and entropy. We propose some corrections to existing methodsto 1
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them conservative. We also propose new discretizations that satisfy positivity of soluti
conservation, and entropy. To our knowledge, it is the first time that discretizations sin
taneously possessing all these properties are presented. Moreover, we point out that
discretizations of the transport equation are independent of the collision term. There
they may be applied to a large class of kinetic equations as Boltzmann or Fokker—Plg
equations.

The velocity discretization of the collision and transport operator leads to a so-cal
discrete-velocity model (DVM). This DVM must be discretized in space and time. Fire
we present an explicit scheme that inherits all the properties of the discrete-velocity mo
However, in view of steady computations, the CFL condition of this scheme is restrictive
dense regimes (wheteis small) and in high-velocity regimes. To overcome this difficulty,
there exist three different methods. First, many authors directly use a discretization of
stationary equation with fixed point techniques (see [3] and Babovski [4]). The drawbac
that this method may converge very slowly (see a comparison in [26]). Another quite rec
approach consists in developing schemes that are robust in the fluid dynamic limit (see
and Levermore [21], Gabettt al.[17], and Caflisctet al.[12]), but the problem of high
velocity regimes does not seem to be resolved by these methods.

Our approach is a classical CFD technique which consists in developing a fully lineari:
implicit scheme, thus stable for any arbitrary relaxation time and any large velocity. A simi
technique has been used by Yang and Huang [36], but in their work, only the negative t
— f of the collision operator is implicit. Our method involves solving a very large linee
system, for which we propose an iterative solver. We use the sparse structure of the diffe
matrices involved in the system, related to the different role of space and velocity variab
Our solver is then a kind of coupling between Jacobi and Gauss—Seidel methods.
linearized implicit scheme appears to be very fast and robust for computing steady flo
for both dense and high speed regimes. We also present an adaptation of this scher
curvilinear meshes and axisymmetric flows.

The remainder of the paper follows logically. In the next section, some properties of |
BGK and BGK-ES equations are recalled, as well as a short list of notations. In Section 3,
presentour velocity discretization of the BGK and BGK-ES collision operators. In Section
we discuss the problem of the velocity discretization of the transport operator in cylindris
coordinates. Then in Section 5, we present our numerical schemes for discretizing our D
in space and time. The linearized implicit scheme is derived from the explicit scheme ¢
the linear solver algorithm is precisely described. The extension to axisymmetric DVM
also presented. Finally, the last section shows numerous numerical results for subs
supersonic, and hypersonic flows. Both plane and axisymmetric cases are presented.
flow computations show the difference between BGK and BGK-ES, the advantage of
approach in comparison with classical DSMC computations for recirculation probler
and the ability of our method for computing hypersonic flows. For axisymmetric flows, tl
different velocity discretizations are compared on a simple 1D case and the potentialit
our method is demonstrated on a 2D flow around a sphere. Whenever it is possible,
results are compared to DSMC and Navier—Stokes computations.

2. BGK EQUATION

The BGK equation is a simplified model of the Boltzmann equation [13] for rarefied gas
which describes the evolution of the mass densitly X, v) of monoatomic molecules that
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have position x= (X, y, z) and velocityv = (vy, vy, v;) € R®
1
3tf+Ufo:*(M[f]—f) (1)
T

The collisions are modeled here by the relaxatior ddward the Maxwellian equilibrium
distributionM[ f] (cf. [5]). This distribution only depends anand on the fluid quantities—
densityp, mean velocityu = (ux, Uy, U), and temperaturé —that are defined by the first
five moments off,

p=(f), pu=@f), E= <%|v|2f> = %p|u|2+ ngT,

where (g) = [g(v) dv denotes the integral of any vectorial or scalar functiprThese
moments are called the density, momentum, and total energy of the gas. We denot
m() = (1, v, %|v|2)T the vector of microscopic quantities mass, momentum, and kinet
energy (normalized by the mass). Similarly we denotegby (o, pu, E)T the vector

of the first five moments off. These notations yield a more compact definition of the

moments:

p = (mf).

Note that throughout this paper, bold symbols are only used for vect®? siich as, for
example,p andm(v). SinceM[ f] depends only om, it will be denoted byM[p] in the
following. An expression oM[p] is

o u? u 1\’
M[p] = . itha= (1| - —,—— ] . (2
[p] = expla - M(v)),  with « (og((anT)w) >RT' RT’ RT) (2)
By definition,M[p] has the same moments and it can easily be seen that this distribution

is the unique solution of the following entropy minimization problem (see, for instanc
[29]),

(P) H(M[p]) = min{H(g), g > 0s.t. (mg) = p}, 3

whereH (g) = (glog g) is the kinetic entropy of the distributiajn This simply means that
the local equilibrium state minimizes the entropy of all the possible states leading to
same macroscopic properties.

With this characterization of the local Maxwellian equilibrium, the following propertie:
of conservation of density, momentum, energy, and dissipation of entropy may easily
proved:

d(mf) + Vy(muf) =0, (4)
o (flogf)+ Vyx(vflogf) <O. (5)
Furthermore, it is possible to check that solutions of (1) are nonnegative. We point

that in a numerical scheme, the preservation of these properties is essential to a robus
economic discretization.
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The relaxation time of the BGK model is defined by
T =cpTi, (6)

wheres is the exponent of the viscosity law of the gas (see [14]). It depends on the molect
interaction potential and on the type of the gas. The const&nR T2/ ttrer, Wherejies is
the viscosity of the gas at the reference temperalreWe refer to a table in [7] for some
values ofs andus of different gases.

The problem of this single relaxation time in the BGK model is that the collision operat
leads to unrealistic values of the transport coefficients at the hydrodynamic limit. In partit
lar, the Prandtl numbétris then equal to 1, instead of the va@given by both experimental
data and a Chapman—Enskog expansion of the Boltzmann equation for monoatomic g
There exist several BGK-like relaxation models that fit the correct Prandtl number (see
models of Shakhov [32], Liu [24], Holway [19], Bouchut and Perthame [9], and Struchtr
[34]). However, few models respect each constraint of positivity, conservation of momer
and dissipation of entropy, as well as a low computational cost. Here, we consider
BGK-ES model introduced by Holway [19] where the collision operator is now

1
C(f) = ~(G[f] - ).

In this model, the Maxwellian equilibrium is replaced by an anisotropic Gausajdr
defined by

P et —uTT
G[f]_mexp( 2(v uw'7 (v u)),

where p7 = ZpRT 1+ (1— %)p® is a linear combination of the stress tengdd =
(w—u)® (v —u)f) and of the Maxwellian isotropic stress tensdRT I = ((v—U) ®
(v—u)M[p]). The relaxation time is now defined by = 2coT~°. The Gaussian sat-
isfies the following properties:

(MG[f]) = (mf), ((v—-—uw)® @-wG[f])=,T, (7)
H(G[f]) = min{H(9), g >0, (1, v,v®v)Tg) = (p, pu, pu U+ p7)T}. (8)

The model is thus positive and conservative, and the entropy dissipation prope
(H-theorem) has recently been proved by Ardst al.[2]. Also note that the fundamental
equilibrium property

C(f)=0s f =M[p]

is well satisfied. In fac€(f)=0 impliesG[ f]= f; thus® =2 RT I+ (1— 2)®. Con-
sequently® = RT | and thereforef =G[ f] = M[p].

Owing to the structure of the BGK-ES operator, which is very close to that of the BG
operator, our numerical algorithms will be quite similar.

In this paper, the diffuse reflection is used for all gas-surface interactions. Incid
molecules are assumed to be absorbed by the wall and re-emitted with the temper:
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T,, of the wall and with a random velocity, according to a Maxwellian distribution centere
on the velocity of the walli,,,

ft,x,v) =¢OM[p,](v), v-nXx) >0, 9)

wherep,, = (1, Uy, 3|u,|? + 2RT,), n(x) is the vector normal to the wall (directed toward
the gas), an@ (x) is a parameter such that the mass flux across the wall is zero

fv~n(x)<0 v-nXx) f(, x v)d

¢(X) - _fv~n(x)>0 v- n(X)M[pw](v) dv’

We refer to [13] for a more detailed presentation of this reflection.

3. CONSERVATIVE AND ENTROPIC VELOCITY DISCRETIZATION
OF THE COLLISION OPERATOR

Let K be a set ofN, multi-indexes ofZ3, and letV be a discrete-velocity grid af,
pointsv, € R® indexed by k= (k, |, ) € K and defined by

v = (v, v'y, v]) = (KAwk, [ Avy, qAY,),

where(Avy, Avy, Av,) are three positive numbers. Thentinuousrelocity distributionf

is then replaced by aN,-vector fi(t, X) = (fx(t, X))kex Where each componerif(t, x)

is assumed to be an approximation foft, x, vk). These components will sometimes be
denoted byfy 4(t, X). The fluid quantities are thus given as in the continuous case, exce
that integrals oriR® are replaced by discrete sums¥nThat is, setting

Ok = Z gkAUxAUyAUz
kel

for any vectorg € R\, we can define discrete moments and discrete entrogy by

px = (Mf)c = Z m(vk) kaUxAUyAUZ,
ke
Hi(f) = (ficlog fio)ic.

Our discrete velocity BGK model follows as a setf equations,
1
B fic + vk - Ve = ;(EK[PIC] - f), Vkek, (10)
and the main problem is to define an approximatigfip] of the Maxwellian equilibrium
M[ p] such that conservation properties (4) and the entropy property (5) still hold. First \

note that the natural approximation (used by Yang and Huang in [36])

&lpxl = Mpcl(w), VkeK (11)

cannot satisfy these requirements. Instead, we propose to use the discrete version c
entropy minimization problem (3). Lefc[px] be defined by the minimum of discrete
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entropy, with the constraints that it must have the same momerfis ag., Ec[pk] is the
solution of the following problem

(Px) Hi(Elpx]) = min{Hk(9), g > 0 € R™ st. (mg)x = px}-

Obviously, it must be checked that this problem has a unique and easily solvable solu
(directly solving(Py) in RN would be numerically expensive). In the continuous case
the conditionp, T > 0 is sufficient to characterize the solution of (3) by the Maxwelliar
distribution. However, this is not true for the discrete case where explicit computations
not possible. To this end, we have then proved in [15, 26] that under a natural assumpg
on V, the discrete equilibriun€[px] has an exponential form if, and only if, strict
realizability condition is fulfilled bypy:

THEOREM3.1. Letpy beavectorirR®suchthattheset, ={g>0e RN s.t. (mg), =
pr} of nonnegative discrete distributions realizipg is not empty. Theithe problem(Py-)
has a unique solutiofix[ p«] called discrete equilibrium. Moreovere assume that has
at least three points in each direction. Then there exists a unique vedtoR® such that
the following exponential characterization hojds

Elpx] = explac- m(vy)),  Vke K,
if and only if px is strictly realizablei.e.,
dge &, st.g>0. (12)

Remark 3.1. Due to the above result, the computatiorégf p«] does not require the
solution of an expensive minimization problemRA":. Instead, only the computation of
the vectora in R® is necessary. This vecter is the unique solution of the nonlinear set of
five equations

(mexpla - M)x = pr,

since&[ pk] realizespi. This set may be solved by a Newton algorithm (see Section 5
Note that for plane flows, we hawg = 0. Then this set reduces to four equations only, ant
we setm(v) = (1, vx, vy, 3|v/%) andp = (p, pUx, pUy, E).

Remark 3.2. Note that the case wher,, is empty is not considered hemnce the
model implicitly contains the fact thatc is realized byfc > 0. However, the condition of
strict realizability (12) is more restrictive than the natural conditien T > O (see [26]
for a counterexample). But, as it is stated in the following thegitis sufficient to have
an initial conditionf strictly positive to ensure thatc is always strictly realizable.

THEOREM 3.2. Let f2 be a strictly positive vector &®™:. Consider the initial value
problem associated with modél0), whereEc[pk] is defined by Py). If this problem
has a solution £, then the solution g remains strictly positive and thus the discrete
equilibrium always has the for[ px] = expla - m(vk)). Moreover the model satisfies
the conservation laws and the dissipation of entropy

d(mfi)c + V(mufi)e =0, d(filog fic)x + Vx(vfxlog fic)x < 0.
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Note here that these properties permit us to obtain existence and uniqueness resul
model (10), as well as convergence toward the continuous BGK (see [25]).

Velocity discretization of the BGK-ES modeFollowing the previous approach, we
define the approximatio@ix[ fi-] of G[ f] by a discrete version of the generalized entropy
minimization problem (8). Then we have

Gl fxc] = expla - M(vy)),

wherem(vy) = (1, vk, vk ® vx)'" anda is the unique solution of the following nonlinear
system of ten equations (six only for plane flows):

(Mexp(@ - M) = (px, prUk, pcUx @ Uk + pZk).

However, note that the modified tensy should now be defined as

1 1
T = —1I1 1-— |06,
K Pr K+< Pr) K

wherep I = ((v — Uk) ® (v — Ux)Ek[px]) k is the stress tensor of the discrete equilib-
rium E[ px]. As opposed to the continuous caggllx is different frompx R T | because

of a lack of symmetry and invariance of the discrete velocity set. This modification is ne
essary to ensure the equilibrium property, i.e., that the discrete collision operator is zer
and only if fx = Ex[px]- The discrete-velocity BGK-ES model is thus positive and consel
vative, but the entropy property seems more difficult to be rigorously obtained. Actual
the fact that the entropy d&[ f] is lower than the entropy of relies for the continuous
case on analytic expressions that are not available in the discrete case (see [2]). But
will be shown in the next sections, computations using this model are possible and ¢
accurate results.

Discretization of the diffuse reflectionUsing our approach, this boundary condition can
be very naturally discretized. The Maxwellian of the wdlf p,,] in (9) is approximated by
the discrete equilibriurdy[ p,,] associated te,,. We set

fiut,x) = d(0)&[pw].  wvk-N(X) > 0. (13)

The parametep (x) must be determined so as to avoid a mass flux across the wall. In t
discrete frame, this yields

ZUk_n(X)<0 vk - N(X) fi(t, X) Avg Avy A,
ka-n(x)>0 Uk * n(X)gk[pw]AvavyAUz )

P(X) = — (14)

4. CONSERVATIVE AND ENTROPIC DISCRETIZATION OF THE TRANSPORT

OPERATOR: AXISYMMETRIC CASE

In this section, we consider a general kinetic equation

df+v.Vief =C(f) (15)
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that could be BGK or BGK-ES, as well as a Boltzmann or Fokker—Planck equation. Fi
we make some remarks about a cylindrical coordinate’s transformation of (15) in view
the discretization and about conservation laws and dissipation of entropy. Then we
algebraic relations that should be satisfied by any finite difference discretization of -
transport operator, independent of the discrete collision operator. We review some exis
discretizations and our new schemes are presented. Last, an application to the BGK equ
is given.

4.1. Conservation Laws and Entropy Dissipation

The axisymmetric formulation of Eq. (15) is obtained as follows. Space variables
written in a system of cylindrical coordinatés, y, z) = (X, r cosg, r sing), and in order
to use the axial symmetry in space, we define the radial and azimuthal velogitiedv,

by
vy = vy COSY + vz SiNg, v, = —Vy SiNg + v, COSp.

The assumption of axial symmetry nowreags (t, x, r, ¢, vx, vr, v,) =0, and the Cartesian
equation (15) yields

2
U¢ Ur

o f +ugoxf +vo f +

T%f—rw%f=qn. (16)
Note the velocity gradients of in this equation are in fact inertia terms due to the loca
coordinate system.

We feel it necessary to explain why this formulation is not convenient for a veloci
discretization. The characteristic curves of transport equation (16) are more complex t
for the Cartesian equation, because they are now curve$ défined by

2
Yy Ur Uy

XO=vx, FfO=v, v®=—,  V{M)=-

T r
However, it can easily be seen that they satigfy)? + Vg (t)2 = cst which means thatin the
plane(v, v,), the characteristic curves are circles. Consequently, one can observe the
view of the discretization of (16), the bounded domain that would replace the velocity sp
should have a circular section in the plape, v,). Otherwise, due to the intersection of
the characteristic curves with the boundary of the domain, boundary conditions in velot
would be needed. Therefore, it appears that, for a future discretization, a circular coordi
system for the radial and azimuthal velocities is more relevant than the previous rectang
system. As Sugimoto and Sone [35], we definandw by (vr, v,) = (¢ COSw, ¢ Sinw),
and Eq. (16) now reads as a much more convenient equation:

¢ sinw

8tf+vxaxf+§cosa)arf_ r

9, f =C(f). (17)
A completely conservative form equation can be obtained:

orf 4+ vgoxr f + ¢ coswo rf — o, (sinwf) =rC(f). (18)
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Now, we define the four moments density, axial and radial momentums, and total ene
by

T
(p, puy, pur, E)T = /(1, Uy, { COSw, %(vf + §2)> f¢ dvy d¢ dow. (29)

The components of the stress tensor and of the heat flux are denqi€xpyo ©;r , pOx;,
POy, anday, g. For the sake of simplicity, we have assumed thas even inw (i.e.,

f (w) = f (—w)); thus the tangential quantitieg, O, O,, 0, are zero. This assumption,
which is equivalent tof (v, v,) = f (v, —v,), is valid for flows without incidence past
axisymmetric bodies. The conservation laws and the dissipation of entropy are obtaine
integrating (18) multiplied by1, vy, ¢ cosw, 3(vZ+¢?), 1+ log f). This yields

otrp + Oxrpuy + o rpuy, =0, (20a)
drpuy + axr (pUS + pOxx) + 3T (pUxUr + pOx,) = 0, (20b)
K pUr + I (pUxUr + pOyr) + 3T (pUZ + POy ) = POy, (20c)

Ol E + Oxr (UxE + 0 (OxxUx + OxrUr) + Ox)
+ 0 I (UrE 4+ p(Ox Uy + OrrUr) +0r) =0, (20d)

Btl’/f log f ¢ dvy d¢ dw + 8xl’/vxf log f ¢ duy d¢ dw
+8rr/§ coswf log f¢dvy d¢ dw < 0. (20e)

In view of the velocity discretization of (18), we now discuss the intermediate ste
between (18) and (20a—20e). For instance, for the density, integrating (18) first yields

rp + Oxrpuy + o rpuy = /g“aw(sina)f)§ dvy d¢ dw + r/C(f){ dvy d¢ dw.
But the contribution of2(f) is zero, as well as the contribution &, since we have
21
/ 0, (sinwf)dw = 0. (21a)
0

Therefore we find (20a). Fgrux and E, Egs. (20b) and (20d) are obtained for the same
reasons. Fopu,, Eg. (20c) is due to the following contribution &f:

2 2
/ coSwd, (Sinwf) dw = / sirf of dow. (21b)
0 0

For the entropy, note that by assumption, the contributio@ f) is negative. Moreover,
the contribution oB,, is found to satisfy

2 27
/ 9, (sinwf)log f dw < / coswf dw. (21c)
0 0

In fact, this relation is an equality, but the inequality is sufficient to obtain (20e). Finall
note that the uniform flows im, X, r, w are a solution of (18). This is due to the trivial
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relation
9, (Sinw) = cosw. (21d)

Consequently, it appears that analyzing the possible discretizations of the termgglue |
in the transport operator is essential to a conservative and entropic discrete-velocity mc
In fact, this short study suggests that it is sufficient to satisfy some discrete relations sin
to (21a—21d). Obviously, this problem does not appear in Cartesian coordinates. Also |
that this problem is different from the approximation of the source term, which has be
treated in the previous section.

The same procedure can be adapted to the nonconservative form equation (17), an
obtain the same conservation laws and entropy dissipation. The different contribution:
9, now read

27 27
/ sinwd,, f dw = —/ coswf dw, (22a)

0 0

2 2
/ cosw sinwd,, f dw = / (—coSw + sif w) f dw, (22b)

0 0
2 2

/ sinwd, f(1+log f)dw < —/ coswf log f dw, (22¢)

0 0
9,1 =0. (22d)

The first relation appears for conservationggfouy, and E, the second one fgsu,, the
third one for the entropy, and the last relation for uniform flows.

Finally, note that iff is not even irw, then there exists an additional conservation law
for pu, with a source term. Relations similar to (21b) and (22b) can be derived.

4.2. Discretization of the Velocity Derivative

In this section, the discrete collision opera@( f) is assumed to be conservative and
entropic (see Section 3 for BGK and BGK-ES operators; see also [30] for Boltzmann ¢
[16] for Fokker—Planck). Then Eq. (15) with only the transport term is considered. T
variablew € [0, 2] is discretized by the point{$oq}$=0, andf (wq) is approximated byf.
Since the problem of conservation and entropy is only due to the discretizatiojsele
Section 4.1)px and¢ are kept continuous.

Let D be a finite difference operator that approximaigst least up to the first order.
In the case of the conservative form equation (18), the tgJtsinwf) is approximated by
D(sinwf)q. Then the discrete approximation of (18) without a collision term is

o fgq 4 vy dxr fq + ¢ COswqdr I g — ¢ D(sinwf)g = 0. (23)

The macroscopic quantities are defined as in (19), except that integrals 2m] [@re
replaced by a simple rectangular formula. For instance, we set

+00 T
(p, pUy, pUr, E)T = /R/O Z (1, Ux, £ COSwyg, ;(vs—i—zz)) fq(vx, ¢) Awduyg de.

q=0
(24)
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Now the discrete approximations of relations (21a—21d) read as algebraic relations for
operatorD:

Y D(sinwf)q =0. (25a)
q
> coswgD(sinwf)q =Y sirf wg fg, (25b)
q q
> D(sinwf)qlog fy <> coswg fq. (25c¢)
q q
D(sinw)q = COSwy. (25d)

The advantage of these relations is that we can prove, exactly as for the continuous equ
(18), that they are sulfficient to obtain the conservation laws for the discrete moments
defined by (24), the dissipation of discrete entropy, and the preservation of uniform floy
This is stated in the following result:

PROPOSITION4.1. Let f={fq}¢, be a solution 0{22), then

o the discrete moments puy, and E satisfy the conservation la§(0a), (20b)and
(204d))if (25a)is satisfied

¢ the discrete radial momentupu, satisfies the conservation law with source term
(20c)if (25b)holds

e the discrete entropy, 0+°° >_q=0 fq109 fq Awdvy¢ d¢ satisfies dissipation rela-
tion (20e)if (25c)holds

o uniform flows (intx, r, q) are preserved if25d)is satisfied.

For the nonconservative form equation (17), the téph is approximated byD (f)g.
The discrete approximation of (17) without a collision term is

¢ sinwy

As for the conservative form equation, the following discrete formulations of relations (21
21d) are sufficient to obtain the conservation laws and entropy dissipation, and to pres
uniform flows

> sinwgD(f)g = —>  coswg f. (27a)
q q
> coswgsinwgD(f)g = Y " (—cogwg + sir’ wq) fq. (27b)
q q
> sinwgD(f)g(1+log fg) < —> " coswg fq log fo, (27c)
q Dﬂh:&q @27d)

Note that the operatdd should preserve the positivity df, but as opposed to conser-
vation properties, this is not expressed by an algebraic relatioD for
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Remark 4.3. Since the radial momentumu, is not a conserved quantity by its own
(there is a source term in (20c)), it is important to address the issue concerning the «
servation of the total momentu[ﬁ(pu) r dx dr dg, whereu is the vectomu = uye, + ur &
in the cylindrical basigey, &, &,). The assumption of axial symmetdy = 0 implies that
the sum of the contributions of the radial momentum is zero. Hence the total momentur
parallel to the axis, i.e.,

/(pu)rdx drdep = (/(pux)rdx drd<p>ex.

Consequentlythis total momentum is conserved, provided that the local conservation I
of puy is satisfied. From Proposition 4.1, a sufficient condition is that (25a) or (27a) hol

4.3. Two Operators Used in the Literature

The following upwind operators are defined for the nonconservative form equation (2
They are presented here with the assumptionttigieven inw and therefore fawg € [0, ]
only.

The first one is defined by a first order upwind discretization, used by Shakhov in [31

fqr1 — fq
D(f)q = A (28)
In the following, the discrete equation (26) with this operator will be denoted by UNCE.
can be seen that this method preserves the positivifyarid uniform flows, since (25d) is
satisfied.
The second operator is defined by a second order upwind discretization, used by ¢
etal.in [35]:

1 1 3

This will be denoted by U2NCE. This operator preserves uniform flows, but not the positiv
of f.

Whereas this discretization is second order accurate, note that the conservation law
obtained at orde® (Aw) only, as for the operator UNCE. Moreover, for these two method:
the entropy is not dissipated.

4.4. Trigonometric Corrections

The fact that the two previous methods do not satisfy the conservation laws can
explained as follows. When one tries to prove that relation (27a) holds, one makes disc
integration by parts, and there appears the adjoint opetarf D, defined by

Z D(f)q0q = Z fqD*(9)q + boundary terms (30)
q g

for any functionsf, g. Then, relation (27a) is obtained if the boundary terms vanish and
D* is exact for the sine function. Our idea is then to modify the previous operators so a
make the adjoinD* exact for the trigonometric functions.
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For UNCE, we replac® of (28) by

fg+1 — COSAwfy
D= ""Ghae -

This operator, denoted by T-UNCE, is an asymptotically equivalent approximation to (Z
as Aw goes to zero; thus it is consistent. It can easily be provedDhamnd D* are exact
for sine and cosine. Then discrete equation (26) has the following properties: positi
of f and conservation a9, puy, and E. However, sinceD*(cosw Sinw)q = —cog wq +
sir? wq + O(Aw), we do not have a conservation law fau, . Moreover, we hav® (1) =
1;;022‘” =1+ O(Aw); thus this scheme does not preserve uniform flows. This last propel
is known to lead to schemes that are not precise and not robust.

For U2NCE, we replac® of (29) by

1

D(f)q = sinAw

1 1+ 2cosAw
(—2 fgr2 + (1 + cosAw) fg41 — — fq>

This operator, denoted by T-U2NCE is also a consistent approximatign tifis exact for
sine and cosine and preserves uniform flows. But due to the nonvanishing boundary te
this is not sufficient to ensure conservation. Namely, the conservation laws are satisfied
up to the first order.

4.5. New Trigonometric Operators for the Conservative Form Equation
We propose the following operator:

Sina)q+1 fq+1 — Sina)q_l fq_l

Desinet)q = 2sinAw

(31

This is nothing but a classical centered finite difference approximation of second orc
where we have replaced the incremaat by the asymptotically equivalent quantity gia.
Thus this formula is consistent. The corresponding discrete equation (23) will be denc
by T-CCE. In order to eliminate the boundary terms in (30), wewset 0 andwq =

27 — Aw. Then (25a) is satisfied, which implies (thanks to Proposition 4.1) that we ha
the conservation laws far, puy, andE. For pu, and uniform flows, note that owing to our
trigonometric correctionfw — sin Aw), thenD andD* = —D satisfy

D(cosw)q = —Sinwy, D(sinw)q = Coswg.

Thus (25b) and (25d) are satisfied, and we have the conservation tay afhd the uniform
flows are preserved. However, this centered operator does not preserve the positivit
f, so we cannot prove the entropy property. We also mention that the operator with
the trigonometric correctior( f )q = (fg+1 — fq—1)/2Aw) only satisfies the conservation
laws of p, puy, andE. It will be denoted by CCE.

Remark 4.4. Note that we can use the centered operdtof )q = (fg11 — fq—1)/2Aw
for the nonconservative form equation (26); it will be denoted by CNCE. The only propel
of this scheme is the preservation of uniform flows. As for the conservative form equati
we can derive the following trigonometric modificatidd( f )q = (fq4+1 — fq—1)/2SinAw.
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Then we obtain the additional property of conservatiop gfuy, andE. This scheme will
be denoted by T-CNCE.

Finally, we propose an upwind version of the previous operator defined in (31) so a:
obtain the positivity. We set

2
— ((sinwg-172) " fq + (sinwg-1/2) " fg-1)), (32)

wherea* denote% (axlal) andwq+1/2 = wq = A—z‘“. Since 2 si@ andAw are asymptot-
ically equivalent, this formula is consistent. The boundary terms in discrete integrations
parts are eliminated by setting =2m — 1 with m such thatw, =x. The discrete equa-
tion (23) with this operator will be denoted by T-UCE. This equation possesses numer
properties that are stated in the following result;

PrROPOSITION4.2.

(i) the positivity of f is preserved

(i) the conservation laws @f, puy, and E are satisfie@Eqgs.(20a), (20b), (20d));
(iif) the entropy is locally dissipatg@q. (20e))
(iv) the uniform flows are preserved

Proof. Property (iv) is obtained by noting that (25d) is satisfied:

: 1 : .
D(sinw)q = ﬁ(squﬂ/z — siNwg-1/2) = COSwq.
sin&2

For (ii), we note thaD (sinwf )4 can be written as a numerical flux differer@eésinwf ) =
hq+1/2 — hg-1/2; therefore (25a) is obvious. Property (i) is due to the upwinding of th
discretization.

The most striking property of this discretization is the entropy dissipation. It can actua
be proved that (24c) holds: by a change of indexes, we have

Q

Y " D(sinwf)qlog fq
q=0

Q
Z A_ ((sinwg-1/2) " log fq_1 + (Sinwgy1/2)~ log fq
:0 2

— (sinwg-1/2) " log fq — (SiNwq-12) ~ l0g fq1) fq.

Then we use the convexity inequaliplogt; <t,logt, +t; — t; for the termsfy log fg+1;
the logarithms vanish and we obtain

Q Q
> D(sinwf)qlog fq Z Y ((sinwg-1/2) " (fq_1 — fq)

q=0 :0 2

— (sinwgi1/2) (far1— fg)).
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By a new change of indexes, we find

Q Q
Z D(sinwf)qlog fq < Z e ((sinwgi1/2) " — (sinwg_12) " — (Sinwg-1/2)

q=0 q= 2

+ (sinwgt1/2) ) fq = Z coswy fq

This is (25c), which implies (iii) (cf. Proposition 4.1).m

Remark 4.5. To our knowledge, it is the first time that a discretization preserving th
positivity, the conservation of, puy, andE, and the entropy dissipation is presented. Alsc
note that if the classical upwind discretization is used without trigonometric correction (i.
with Aw instead of 2 sirfy? in (32), which will be denoted by UCE), then we have only
D(sinw)q = coswg + O(Aw), and only properties (ii) and (i) are satisfied.

Remark 4.6. The evolution equation gbu, (20c) is obtained at orde®(Aw) only.
But we think it less important to be obtained than the other properties. In fact, Eq. (2
possesses a source term; therefore even in a continuous case, the guanstyot really
conserved.

4.6. Summary of the Different Discretizations and Their Related Properties

For the readability of the following, we summarize in this section all the previous schem
The discretizations of the velocity derivative for the conservative form equation (18) ¢
the following

Sina)q+1 fq+1 — Sina)q,l qul
2Aw
Sina)q+l fq+1 — Sina)q,]_ fq71
2sinAw

’

CCE: D(sinof)q =

T-CCE: D(sinof)q

’

UCE: D(sinwf)q = A—lw(((sianﬂ/z)+ fqr1+ (Sinwgi1/2)” fq)
~ ((sinwg-1/2)" fq + (Sinwq-172) " fa-1)).

T-UCE: D(sinwf)q = Zs’ii%(((sianﬂ/szq“ + (sinwge2)” fq)
— ((sinwg-172) " fq + (sinwq-12) ~ fq-1))-

For the nonconservative form equation (17), we have

fai1 — foo
CNCE: D(f)qz%,
w
foi1 — foo
T-CNCE: D(fh:%
fqug — f
UNCE: D(f)qz%,
w

fq+_‘]_ - COSAC{)fq

T-UNCE: D(f)q= e
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TABLE |
Properties of the Discrete-Velocity Models for the Axisymmetric Transport Operator

Uniform flows Positivity Consp, puy, E Cons.pu, Entropy
CCE yes no no no no
T-CCE yes no yes yes no
UCE no yes yes no no
T-UCE yes yes yes no yes
CNCE yes no no no no
T-CNCE yes no yes no no
UNCE yes yes no no no
T-UNCE no yes yes no no
U2NCE yes no no no no
T-U2NCE yes no no no no

1 1 3
UZNCE D(f)q = — (__ fq+2 + 2fq+1 - é fq) N

Aw 2
1 1 1+ 2cosA
T-U2NCE: D(f)q = ShAw (—2 fgr2 + (1 + cosAw) fqq1 — fw fq).

We recall that the schemes CCE, T-CCE, UCE, and T-UCE are the new schemes that
been proposed in Section 4.5 for the conservative form equation, as well as CNCE
T-CNCE for the nonconservative form equation. Schemes UNCE and U2NCE have b
respectively proposed in [31] and [35]. They are recalled in Section 4.3 of the pres
paper. Finally, their trigonometric corrections T-UNCE and T-U2NCE have been propo:s
in Section 4.4. The properties of all these schemes are recalled in Table I.

Note that another approach has recently been proposed by Larina and Rykov [22]. |
modification of the radial velocity cosw, they obtain a second order conservative schem
(for p, puy, puy, andE), but nonpositive. If we replacAw by sinAw in their method, it
reduces to our scheme T-CCE.

4.7. Application to the BGK Equation

In order to apply the previous discretizations to the BGK equation, we discretize 1
velocity variables, and¢ by

K =kAavk+a, g=IAc,

with k= (k, I, ) € K (cf. Section 3). The fully discrete-velocity models for the nonconser
vative and conservative axisymmetric kinetic equations are

&1 sinwg

3 T 4 v¥dx fi + ¢ coswqdr Tk — D(fx1)g = C(fi)k (33)
Ar fic 4 v&axr T + ¢ coSwqdrr fk — & D(Sinwfi1)q = rC(frk, (34)

where fi| = (fi1,q)g=0..0. In the case of the BGK equation, the discrete collision operatc
is

1
C(frk = ;(5k[pIC] — f).
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According to Section 3&[pi] is the discrete equilibrium defined [ px] = expla -
m(vy)), wherem(v) = (1, v, ¢ COSwyg, & Sinwg, 3([vK12+ )T, and the vectoex is the

X

unique solution of the nonlinear system of five equations:

Z M(vk) eXplee - M(vk)) & Avx AL Aw = (p, pUyx, pUr, pUy, E).
k

Note that if the distribution function is evenan thenu, = 0, and the system above reduces
to four equations only. This is also trueuf = 0.

5. DISCRETIZATION IN SPACE AND TIME OF THE DISCRETE-VELOCITY MODELS

In this section, we give an explicit scheme and a linearized implicit scheme for fe
computing steady flows. The linear solver for solving the large linear systems is detail
The algorithm for computing the discrete equilibrium is also given. The extension of the
schemes to axisymmetric models is discussed at the end of the section.

5.1. Explicit Scheme

For the sake of simplicity, our scheme is presented here in two spatial dimensions c
Cartesian grid, but all the properties stated here are valid for a 3-dimensional space
curvilinear meshes (cf. below). The equation to be approximated is

1
3 fic + vy fic + vy dy fic = ;(&[PK] - f, kek. (35)

Note that in the case of plane flows, the dependencyx0bn v, can be eliminated by
introducing reduced distribution functions (see [36]). But this technique is not used h
because it is not possible for axisymmetric flows, and we want the same scheme for t
2D plane and axisymmetric flows. Consider a spatial Cartesian grid defined by no
(Xi, ¥j) = (1 Ax, jAy) and cellski_1/2, Xi+1/2[ x]Yj—1/2, ¥j+1/2[. Consider also a time dis-
cretization witht, =nAt. If fif‘j =(fk'ji,j)k€,< is an approximation offi(tn, X;, y;), the
moments off;"; are naturallyp('; = (mf", ), and the corresponding discrete equilibrium
is denoted by(&[p!' | Dkex- If pf'; is strictly realizable (in the sense of (12)), the discrete
equilibrium is thereforefi[p' ;] = expla]'; - m(vk)), wherea; is the unique solution of

1]
the system of four nonlinear equations (see Remark 3.1):

(m exp(a{fj m)), = ol (36)

The transport part is simply the linear convection equation and can be approximatec
a standard finite volume scheme. For the nonlinear relaxation term, a standard cent
approximation technique is used. Our scheme thus reads

At At

1
fkrji{,rj = fkn.,i,j - H(}-l?,iﬂ/z,j _]:I?,ifl/z,j) - A_y<~7:l?.i,j+1/2 _fl?,i,jfl/2)

At
+ﬁ(5k[f’in,j} — i) (37)

i
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where the numerical fluxes are defined by

1

fl2i+1/2,j = E(Ui(fkﬁiﬂﬁj + fkrTi,j) - ’v>|§|(AfkrTi+1/2,j o CDEJH/Z,J‘))
1

Fijrye = Q(U'y(fk”,i,m +00) = 1oy (AR a2 — PRijaa2)

with the notationA f; 1 » ; = i 1 ; — fii j, and the flux limiter functiondy; , , ; al-
lows us to obtain a second order scheme. For instabge,, , ; =0 for first order, and
DR y1/2 ) =minmod ATl 1o, Aflii10 i, Afis/ ) for second order.

With the appropriate definitions of our discrete-velocity model, our scheme now posses
the expected properties. Inthe case of aninfinite space domaifi(ije.¢ Z2), Theorem 3.2
can be expressed in its numerical form (proved in [26]):

PROPOSITIONS.1. Let{ fk‘fi,j }i,j be a strictly positive initial condition. If the time steps
follows the condition

()8

then the sequendd "}n-o defined by the first order scher(®7) remains strictly positive
and the discrete equilibrium i§[p/";] = exp(a'; - m(vk)). Furthermore the total mass
momentumand energy are conserveand the total entropy is decreasing.

General geometries are treated with a curvilinear mesh. Then we use the curvilir
coordinatest (x, y) andn(X, y) to approximate space derivatives on the grid. After thi:
change of variables, Eq. (35) yields

1 Ve v 1
—o f d = f | — ) = — — f
7% K+ g(vk 3 k> + ,,<vk 3 k> JT(Ek[PK]

whereVé = (3x&, dy€), Vip = (9xn, dyn), andd = 0x&dyn — dy& dxn. If we define a uniform
grid (& =i AE, n; = j An), then a scheme very similar to (37) can be used

At At
1
i = T = o (Frisvzi = Fricyzi) b — o (Feiisrz — Foij-v/2)
AE A

At
+ - (&lpl] = 1)
1]

where the numerical fluxes are defined by
1 \%3
I2i+1/2.j = Z(Uk' <J> (flgi+1,j + fkrji,i)
i+1/2,]
VS)
i+1/2,]

-
©

Fij+1/2 = ( T)i j+l/2(fkrji,j+1+ feii)

(5)
v | —
J Jiit2

Afkl+1/2j ¢k|+1/2 J)>

NI =

Afk| j+1/2 — <I)kl j+l/2))
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The geometric coeﬁicientszi)iil/z’j, (?)i,jﬂ/z, andJ ; are standard approximations
used in order to preserve the free stream. This scheme has the same properties as scher
(i.e., positivity, conservation of moments, and dissipation of entropy), provided thata C
condition similar to (38) is satisfied.

Remark 5.7. The same scheme is used with the BGK-ES model by replatiig;]
by Gi[ 1.

5.2. Linearized Implicit Scheme for Steady Flows

In steady state computations, CFL condition (38) of the explicit scheme is very restrict
for dense or rapid regimes. A classical way to overcome this difficulty is to use an impli
scheme. It is derived from the explicit scheme by evaluatirig,atthe terms that produce
undesirable negative distributions for large.

5.2.1. Description of the schemeln the collision operator, the loss term-{; ;) is
negative and then it is written &t,1. The gain term, namely the discrete equilibrium
&lpl';], is positive and therefore may be kept explicit (a strategy used in [36]). Howeve
gain and loss terms are then evaluated at different times, which is observed to slow
convergence of the scheme considerably (see [26]). Consequently, we decide to eva
the gain term at,,,; as well. However, defining an implicit relaxation tim?{’l is not very
useful. Since the discrete equilibrium is a nonlinear functiori gt may be linearized as
follows,

&l ~ &lpl;] + [D] (£ = )],

whereD['; is the Jacobian of the mappirge RN £[g] evaluated atf";. Then the
linearized implicitfirst order scheme is the following

fkn|+1l (}-l?ﬁl/z j -7:|2T11/2 J) Ay (]:lgﬁﬂ/z -7:12?1171/2)
At At
+ o (R0 = [0 8570 = Ky + o (Eclel] = [P0 )
i] ij
forkeandi, j=1,...,Iimax jmax FOr the second order scheme, the flux limiters (non

differentiable) are kept explicit. The followingmatrix-form of the scheme is more adapted
to computations,

<A|t+T+R”>8f“ RHS, (39)

where §f"= f"1— " | is the unit matrix, T is a matrix such thatT f")y; ;=
Ax(fkl-ﬁ-l/zj Fhi 1/2])+ Ay(]—'kI i+1/2 = Fri.j—1/2) With only the first order fluxesR"
is such that R ), j = = (f =D f), and
RH o 1 n ]:.n 1 fn ]:'n
S‘Q,i,,— = —H( Ki+1/2,j — k,i—l/2,j) - A7y( ki, j+1/2 — k,i,j—l/2)

1
+ = (&[el] - £ )

i
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FIG. 1. MatricesT andR" and the corresponding storage of vectér

which contains the limiters for the second order scheme. The JacDjamas the simple
form

Dk, K1 = A7 (af))) :m(u) ® m(ue) &[] AvAvyAvz, (40)

WhereA(a{fj) ={m®m exp(aﬂj -m)) k. A similar scheme can be derived for the BGK-ES
model.

The particular structure of matricés and R" may be noted. If quantitiesy’; ; are
stored asf" = (" )kexc With ' =¢( fk“,i,j), then it can easily be seen (cf. Fig. 1) tfats a
N, N¢c x N, N¢ block diagonal matrix witiN; x N pentadiagonal block® (N¢ = imax x
jmax is the number of cells) and th&" is a full matrix of diagonal block& .. One can
also note that iff, is stored by then byj, then the(i, j)th line of a blockT is

[0,...,0, Tki-1j,0,..., 0, Tiii,j—1, Ticiij» Tij+1, 05 .., 0, Tii41,j» O, ..., O],

with
1 4 14 1 1.
Tei-1j = A Tij-1= —?yvy , Tki = B|vx| + Ay vy |,
_ 1
Teij+1 = ?yle v Tkt = th’ .

The diagonal element of th@, j)th line of a blockRy ,, is

1
= (8w — Dk, K1),
Ti,j
wherejy i is the Kronecker symbol, adqffj [k, k'lis defined in (40). These sparse structures
are naturally due to the fact that the relaxation process in the BGK equation is local in sp
but global in velocity, whereas the transport process is numerically global in space but Ic
in velocity.

Remark 5.8. As for the explicit scheme, a linearized implicit scheme can be derived f
curvilinear meshes. This scheme can be written as in (39), but the elements of &ploc
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depend on and j; we have

1 VE * o1 Vi -
A& {Uk. <J>i—1/2,j:| PR T A [Uk' (‘J)i,j—l/z] ’
o=z ([ (5), ) 1 (5) 0]

KT A\ [ i11/2] <\ i—1/2,

([ (), (),
(o (0 — o [ :

An ([vk ( I Jiia2 NN ij-1/2

M= g (5, S ag v (5) )
Kivj+1 = 7 | | 5 v kL) = o |V | T
" An I /it T A J Jiv12

5.2.2. Resolution of the linear system (39T he linear system (39) to be solved at each
iteration is very largel, Nc x N, N¢), and an iterative method well adapted to different
sparse structures of the matrices may be used. We use here an algorithm based on a col
between Jacobi and Gauss—Seidel methods by using the storage of Fig. 1RFiist,
separated into its block diagonal' and its block off-diagonaE", i.e., R"= A" — E" (this
is the Jacobi step). Then system (39) is equivalent to

Tei—1j =

I
(A,[+T+A“>8f“: RHS + E"5f".

Since the matrix of this linear system is block diagonal with pentadiagonal blAl?cksTk +
A}, itis possible to use a line Gauss—Seidel method by s€eftirgMy — N. This gives
the following algorithm:

ALGORITHM 1.

1. setg©® =0,
2. for p=0,..., P, solve

|
(m + M+ AQ) g = RHF + Negl” + [E"gP],.  kek,  (41)

3. setsf"=gP+b,

The linear systems (41) may easily and exactly be solved by succéddivkecompo-
sitions of tridiagonal matrices d®'maimax or Rimac<Imax Note that calculating the product
E"g is not very expensive because the block&dfare diagonal. In fact we have

[E"gli; = %Afl(aﬂj)m(vk)é‘k (o7 ] - (Mg i)k — MW Gk j Avx AvyAvy).
1]
It is thus sufficient to computA‘l(a{"j )m(vk)Ek[pﬂj] at the beginning of the algorithm (a
local computation in k and j), then to computémyg; )« on each cell (which is local in
i, j), and finally to form the dot product. The computationEdfg is thus local ini, j, and
hence completely parallelizable; its cost iSOiN:N,).

It is well known in CFD that since only a few iterations are needed to have the extert
process converge (the loopm, it is not useful to carry on an algorithm like the previous
one at convergence. The cost of our implicit scheme is th&wiA N, N.) whereP =2 or
3, which is confirmed by numerical experiments (see [26]).
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5.3. Computation oby';

The nonlinear set of Egs. (36) may be solved by the following Newton algorithm, whe
F is defined byF (B3) = (mexp(3 - m))x — pi”_j.

ALGORITHM 2.

1. seta® e R4,

2. solvethe linear systenfr’'(a™)a" ™Y =a — F(a)
until a stop criterion is satisfied,

3. setaf; = a”.

Such an algorithm requires almostN,2operations by iterationand by cell(i, j) and is
thusinO(N¢N,). For most cases we have tested, this algorithm is robust enough, if the ini
datum is wisely chosen (cf. below). However, a backtracking linesearch algorithm rr
be employed if the matrif’(a™) = (m® mexp(a™ - m))¢ is too much ill-conditioned.
This may happen when the velocity of the flow is very high, since the last element
m(vx) ® M(vy) is |vk|4, whereas the first one is always 1. For the initial conditéf, we
use the parametet of the continuous equation (2) at the beginning of the computatiol
Then, when the flow is almost stabilized, we tak&® = ai”}l computed at the previous
global iteration. With this choice, the algorithm converges rapidly—only one iteration
needed for most cases tested. The same algorithm is used to compute théL’Q/JeMaich
defines the discrete Gaussigg[ fif‘j] of the BGK-ES model.

5.4. Axisymmetric Flows

Consider a discrete-velocity model for the conservative form equation, as given by (3
The explicit scheme of Section 5.1 can now be applied to this model:

At At

+1
fkrji,j = fkn,i,j - B(}—Izﬂrl/zj - Fl?,ifl/Z,j) - AT (rj+1/2~7:l?,i,j+l/2 - rjfl/zfl?,i,jfl/Z)
j

+ %tj(gk[ﬁ’in,j] — i) + Atf_;D(Sinwfkr?I,i,j)q'
Note that owing to the cell-centered approach, the radiisalways strictly positive, even
near the symmetry axes (where= %Ar).

We can prove that if the operat@ has the properties mentioned in Section 4, thel
this explicit scheme is also positive, conservative, and entropic. Note that the only
ference with the Cartesian case is the presence of theMéjtrD(sinwfk’]’iyj)q. For the
linearized implicit scheme, the opposite of this term can be rewritten under a matrix-vec
productA" f" where A" is a full matrix of diagonal blocks. Then we have the following
scheme:

I
<M+T+R“+A“>5f“: RHS.

The Jacobi—Gauss—Seidel algorithm 1 can be applied to this linear system. R foe
split A" into its diagonal pariA a» and its off-diagonal part- E a» in the Jacobi step of the
algorithm. The algorithm is now
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ALGORITHM 3.

1. setg©® =0,
2. for p=0,..., P andke K, solve

I
(E + Mic+ Af + [AAn]k) 9’ = RHE + Neg” + [(E" + Ex)g ],

3. setsf"=gP+D,

For instance, with the operator T-UCE, we have

[AAn]k,i,j = —rizgﬁ((sianJﬁ[/z)ﬁ_ — (Sina)qfl/Z)_)s
2
é‘ ) ) _
[Ea i = m((smwtﬁlﬂyrfkrjl,q+1,i.j — (sinwg-12) " 1 q-11})-
2

6. NUMERICAL RESULTS

We present numerical tests for plane and axisymmetric flows. For plane flows, the |
provement of the results due to the BGK-ES model is shown. We also show test ce
where our implicit deterministic method is a relevant alternative to DSMC. For axisyr
metric flows, the different discretizations of Section 4 are compared on 1D cases. We
present an application of these schemes to an axisymmetric flow around a sphere.

Except in some cases, the linearized implicit scheme of second order is used in all
computations, with a CFL number of 10,000 (i&t,is 10,000 times the explicit time step).
The criterion used to determine whether the flow has reached steady state is the redu
of the quadratic global residu%(zk,i‘j IRH; ;192 by afactor of 16.

Numerically, all the boundary conditions (gas-surface, symmetry axes, etc.) are treate
a classical ghost cell technique (see [37]). For instance, incident molecules in a bounc
cell of indexes(i, j =1) are supposed to be re-emitted by the wall from a ghost cell c
indexes(i, 0). This cell is the mirror cell of(i, 1) with respect to the wall. The diffuse
reflection (13) is then modeled by

feio=di1&lpw].  vk-Mi1>0,

whereg; 1 is determined so as to avoid a mass flux across the wall, i.e., betwee( d@lls
and(, 1). Relation (14) gives

) n
ka-ni.1<0 vk - Mig Bl AvcAvyAv,
ka'nipo v - Ni 1 Ek[pw] AvxAvyAv,

di1=—

Moreover, relation (6), wheré is given for each gas in [7], is used to compute the
relaxation time of the model. As explained in Section 2, this depends on the molect
interaction potential. For each test case, we specify which potential is used among V!
hard-sphere, and Maxwellian potentials. In each comparison, a unique potential is uset
the three methods (BGK, BGK-ES, and DSMC).

Note that the velocity grid is appropriately chosen for each case. Since the same gri
used in each point of space, it should be large and precise enough to correctly describ
flow (i.e., the distributions everywhere in the space domain). Then the bounds are gi
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by a combination between the maximum macroscopic velocity and the temperature of
flow (max (u + c+/RT), where we take = 4). The step of the grid is given by the smallest
temperature (i.eAv = min,~/RT). These quantities may be estimated by two method:
First, in some cases, they are given by the data, e.qg., velocity and temperature at infinity
wall temperature. But for more “extreme” flows, the maximum temperature is much gree
than these data. Then in those cases, we make a converged Navier—Stokes computatio
the converged values of the macroscopic velocity and temperature are sufficient for defi
a correct velocity grid.

Finally, note that all the tests presented here have been computed on the single proc
of the IBM-SP2 (120 MHz-512 Mo).

6.1. Plane Flows

6.1.1. Compression rampHere our method for BGK and BGK-ES equations is com-
pared to the DSMC method, which simulates the Boltzmann equation with the code of J
Lengrand [23], and to the Navier—Stokes equations (without slip condition). We stud
supersonic flow past a flat plate of 5 cm followed by a compression ramp of b8 gas is
air, and the parameters of the flow arg = 1.288 104 kg- m~3, T,, =722 K, M, = 3.67,
for the density, temperature, and Mach number. The wall temperature is 72.2 K. The mo
ular mass is 815 102%kg and the viscosity expone#itis 0.77 (VHS model). This gives
a Knudsen number of. 81072 at infinity. For the four methods, we use the same mes
of 70x 70 cells. For BGK and BGK-ES, the velocity grid has:x31x 11 points with
bounds -150Q 1500]x [—120Q 1200]x [—120Q 1200].

For the BGK model, the computation takes 260 iterations and 42 h CPU. For BGK-E
it takes 564 iterations and 60 h CPU. For the DSMC, the computation takes 8000 iterati
and 46 h CPU. We used 2600 samples and an average of 20 particles per cell, with a
step of 5167 s. The Navier—Stokes computation takes less than 10 min CPU.

The contours of density and temperature are plotted in Fig. 2 for the four methods.
results obtained with BGK, BGK-ES, and DSMC are very close, and this can be seen
clearly in Fig. 3 where the distribution of temperature following three vertical kne.5,

5, 7.5 cm is shown. One can only note a difference near the wall where BGK-ES is m
accurate than BGK. The influence of the Prandtl number is thus clear. On the other h:
Navier—Stokes equations give very poor results at the beginning of the plate and within
shock. An explanation is that the local Knudsen number (see [7]) at the leading edge is C
which is beyond the validity range of Navier—Stokes equations. In fact, Bird notices in |
that the error in Navier—Stokes results is significant in the regions of the flow where the lo
Knudsen number exceeds 0.1. For the DSMC, note the noise induced by the stochas
of the method. Also, it is apparent that the results of the DSMC are inaccurate in the sr
region in front of the downstream boundary. This is a direct consequence of a defect in
boundary conditions (see [11]). Although the CPU times of BGK and DSMC are provid
for this case, a fair comparison of computational speeds of the two methods is not €
because their criteria of convergence are very different. For instance, making more san
to decrease the noise in DSMC results can strongly increase the CPU time of this metl

6.1.2. Recirculation. We want to prove that it is relevant to use BGK for flows with
a recirculation zone. It is well known that particle methods such as DSMC have so
difficulties converging in these situations. A problem is that, due to the low velocity of tt
flow in the recirculation, a large number of iterations may be needed to reach steady s
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FIG. 2. Compression ramp: density (left) and temperature (right) for BGK, DSMC, BGK-ES, and Naviel
Stokes.

Moreover, the density is often very low in such a zone, which implies that after a long tin

particle methods have not enough representative molecules to correctly describe the g
Here we consider a supersonic plane flow past a cylinder of radius 1 m. The paral

ters of the flow arep,, =0.31696 10°kg- m3, T,, =249K, M., =4, for the density,
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FIG. 3. Compression ramp: temperature distribution along three vertical ine(5, 5, 7.5 cm) for BGK,
DSMC, BGK-ES, and Navier—Stokes.

temperature, and Mach number. The wall temperature is 293 K. The molecular mas
0.663 102 kg and the viscosity exponesis 0.5 (hard-sphere model). This gives a Knudser
number of 00358 at infinity. These characteristics correspond to an atmospheric flow
90 km of altitude (but here, the gas is argon). We use a meshx»feBcells and a velocity
grid of bounds 2562 2562]x [ 2462 2462]x [—2303 2303] with 11 points in each
direction. We test our BGK method and the DSMC on this mesh. For DSMC, with -
particles per cell, the steady state is reached after 250 iterations with a time ste@4fsl
Afterward, we used 2500 samples (each three time steps) to compute macroscopic va
Note that the mesh respects the criterion of cell size lower than the mean-free-path
near the wall. Thus one can expect that DSMC results will not be very accurate.

For BGK, the computation takes 1167 iterations and 90 h CPU. The DSMC computat
takes 50 h CPU, which is shorter than for BGK. The total number of molecules in the flow
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FIG. 4. Recirculation behind a cylinder. Comparison between BGK and DSMC: density (top) and veloci
field in the recirculation (bottom).

stabilized at the end of the computation, which proves that the flow has reached steady-<
However, the cells in the recirculation zone contain between one and five molecules o
which is clearly not sufficient to correctly describe the gas. This problem is also obsen
in Fig. 4, because the recirculation zone (visible on the zoom on velocity field) is pool
described by DSMC, contrary to our method. In addition, we observe that the time ste,
too large in the shock since it is ten times as large as the inverse collision frequency. Fin
note the noise on density contours obtained with DSMC.

Consequently, whereas BGK is more expensive than DSMC on this test case, our me
appears to be more accurate. Note that with DSMC, a smaller time step and almost
times as many molecules as in this computation would be necessary to obtain more co
results. Then the CPU time of DSMC would be greater than the cost of BGK.

Also note that contrary to DSMC, the parameters of our method do not need to be adaj
if there is a recirculation zone. The resolution of the velocity grid is not affected by th
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phenomenon, contrary to the number of molecules of DSMC. This suggests that our me
is simpler to use.

6.1.3. Hypersonic flow. We present this case for testing the robustness of our meth
on hypersonic flows (and particularly the Newton algorithm and the linear solver). This
a hypersonic flow at Mach 18.3 without incidence on a flat plate of length 10 cm, wid
0.5cm, and an angle of length 1.4 cm at the leading edge. The parameters of the flow
Poo =5.1910°kg- m~3, T, =136 K, M, = 18.3, for the density, temperature, and Mach
number. The molecular mass i$8 10-26 kg and the viscosity exponent is 0.5 (hard-sphere
model). This gives a Knudsen number 041072 at infinity. This case has been studied by
Andriéset al.in [1] with a Monte-Carlo-like code which simulates Boltzmann, BGK, anc
BGK-ES equations (see also [10]).

For BGK, we use a mesh of 3629 cells in tangent and orthogonal directions to the plate
Thisis very coarse compared to the mesh of [1] which has almost IBD cells. A Navier—
Stokes computation gives a velocity grid of bounds280Q 2300]x [—-160Q 1600]x
[—130Q 1300] with 31x 29 x 27 velocities. Such a grid would lead to very long compu-
tations; then we only take 2421 x 21 velocities. The computation takes 140 iteration:s
and 36 h CPU. We observe that the code succeeds in computing such a violent flow.
confirms the robustness of the implicit scheme and of the Newton algorithm.

Our results are plotted in Figs. 5 and 6. First, we note that our results are globally qt
close to that of [1], whereas our mesh is much less refined (because the determin
resolution of BGK does not require a mesh as fine as DSMC).

One can have an idea of the kinetic nonequilibrium near the leading edge by not
that the local Knudsen number is 0.5 and by plotting the reduced distribution functi
F(vx, vy) = f f (vx, vy, v2) dv; (See Fig. 6). One can clearly see the half-Maxwellian o
the wall centered omiy, =0 and the Maxwellian of the upstream flow, centered on th

temperature

pressure
T T
3 =
2 1
1- -
04
-14
=2+
-34
T T T T
2 0 2 4 6 8 10 -2 0 2 4 6 8 10

FIG.5. Contours and velocity field for hypersonic flow past a flat plate.



458 LUC MIEUSSENS

1600_ T T T T T T T T I 1
1000 -
- 04 -
-10004 =
-1600 T ey
-2000 -1000 0 1000 2000

VX

FIG.6. Reduced distribution functioR (v, v,) at the leading edge of the flat plate. Note the half-Maxwellian
of the wall centered om, = 0 and the Maxwellian of the upstream flow, centered on the upstream velocit
u, = 1500.

upstream velocity, = 1500. As the wall temperature is greater than the upstream one, t
half-Maxwellian has a larger spread.

We want to emphasize that the conservation and entropy properties of our discri
velocity model are essential in the fact that we need onfydidcrete velocities to reach
steady state. For comparison, note that in [36], for a case at Mach 12 (instead of 18.3 h
more than 70 discrete velocities in each direction with a nonconservative discretization
needed.

6.2. Axisymmetric Flows

6.2.1. 1D flow. We consider a gas between two coaxial cylinders. The large cylind
rotates at a constant velocity and the small one is stationary. Therefore the flow depe
only on the radiug. This case has the advantage of being computable either by a
plane method or by a 1D axisymmetric method (cf. Fig. 7). Moreover, the total mass
the gas is constant; then it is a good case for testing the conservation properties of

[N

FIG.7. Geometry of the flow between two cylinders (left), 2D plane mesh (top), and 1D axisymmetric me
(bottom).
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FIG. 8. Total massM(t) (normalized to 1) of the gas between two coaxial cylinders: schemes U2NCI
T-U2NCE, and UNCE are not plotted here siridét) rapidly decreases to 0.

schemes. The parameters of the flow are the following: the gas is argon of molecular n
0.663 10°2° kg and of viscosity expone#t= 0.5 (hard-sphere model). The flow is initially
at temperature 300 K and of densityl@47 10°kg- m~3. The large cylinder rotates at a
constant speed of 106871, and the two cylinders have a temperature of 300 K. They ha\
radiusR; =1 m andR, =2 m. This gives a Knudsen number basedryrof 0.1. For the
2D plane computation in thgy, z)-plane, the mesh has 2220 cells ing andr directions
(cf. Fig. 7). The velocity grid has®velocities and bounds-{100Q 1000F. For the 1D
axisymmetric computations, we use a mesh of 20 cells in thieection and a velocity grid
of 9 x 6 x 18 points in(vx, ¢, w)-directions.

For plane and axisymmetric computations we use the explicit scheme, in order to |
the total mass during the unstationary part of the flow (see Fig. 8). First we observe 1
the upwind nonconservative schemes (U2NCE, T-U2NCE, and UNCE) do not conserve
total mass at allM (t) rapidly decreases to 0. Thus the trigonometric correction T-UNC|
of UNCE appears to be essential. For the second order centered nonconservative sc
CNCE, the mass is not conserved, but it changes only by 0.01% between the initial time
the steady state. For all the conservative schemes (UCE, T-UCE, CCE, T-CCE, T-CN
T-UNCE), the total mass is perfectly constant. Note that for the 2D plane computation
total mass is slightly decreasing, whereas the scheme is theoretically conservative. Tt
a consequence of the approximation of the curved boundaries with the curvilinear mes

At steady state, we also plot the tangential velocity and the density for all our scher
(Fig. 9), except for UNCE, U2NCE, and T-U2NCE which give totally incorrect results (the
cannot be plotted on the same scale). This is not surprising, since these schemes satis
conservation laws only up to the first order (see Sections 4.3 and 4.6). Considering
results of the 2D plane computation as the reference curves, we observe that second
axisymmetric schemes (in velocity) are much more accurate than the others (CCE, T-C
CNCE, and T-CNCE). Moreover, there is only a small difference between the schemes
their trigonometric corrections, except for CCE. Also note that the trigonometric correcti
T-UNCE of UNCE gives very poor results, which are, however, more accurate that UN
itself. The reasonis that T-UNCE is conservative, as opposed to UNCE, but does not pres
uniform flows.
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FIG. 9. Tangential velocity (left) and density (right) of the gas between two coaxial cylinders.

If the number of points is increased from 18 to 60 in &hdirection of the velocity grid,
then we observe that the difference between trigonometric corrections and basic schen
smaller. The first order schemes are closer to second order schemes, and all the axisymn
results are closer to plane results. Consequently, it is clear that axisymmetric computat
require a more precise velocity discretization than plane computations. This is probably
to the fact that in the axisymmetric case, a velocity derivativé afust be approximated.
In plane computations, only an approximation of the momenfsiefneeded, i.e., integrals
on velocity space, which requires a less precise discretization. Finally, note that whel
the second order schemes do not theoretically preserve the positivitytbfs does not
affect our results for this test-case.

For testing our implicit schemes, we use a slightly different test-case, taken from Sc
et al. [33]. Here the only difference with the previous case is that the boundary conditio
are now evaporation-condensation conditions. This means that at the surface of the ¢
ders, the distribution function is completely prescribed. Consequently, there is a mass
across the boundaries, and the total mass is no longer conserved. Thus we can expec
conservation properties are less crucial here. On the small cylinder, the pressure is s
0.0708 and to 0.0779 on the large cylinder, with the same temperature as previously.
plot the results for the tangential velocity and the temperature (Fig. 10), normalized by

T T T T 1.05 T T T T

— - — 2D Plane scheme
O—O0CCE

03 e—eT-CCE
O—CNCE

tangential velocity
temperature

0.95 L : .

r(m} r(m}

FIG. 10. Nondimensional tangential velocity,//2RT, (left) and temperaturel /T, (right) for the
evaporation-condensation problem between two coaxial cylinders, Whisréae temperature of the small cylinder
(case taken from [33]).
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parameters of the small cylinder (see [33]). The plane results are very close to that of [33].
axisymmetric results, we found the same hierarchy between the schemes as in the pre
test-case. The difference is that here, upwind nonconservative schemes (UNCE, U2N
and T-U2NCE) give correct results. Moreover, if the number of paigtss increased as
previously (from 18 to 60), we observe that second order centered schemes become ver
stable, and the computation stops. Consequently, despite their high accuracy, these sct
lack robustness.

This short study proves that the trigonometric second order centered schemes hav
highest accuracy. Among these schemes, there is no significant difference between
cretizations of the conservative and nonconservative form equations (T-CCE and T-CN(
However, as it is proved with the last test-case, these schemes lack robustness. Ther
the best compromise between robustness and accuracy is the scheme T-UCE, whicl
numerous strong properties (see Table I).

6.2.2. 2D supersonic flow past a spherén this test, we advance the validation of our
method for solving the axisymmetric BGK equation. We consider a flow past a spht
of radius 0.1 m, with the parameters of an atmospheric flow at 90 km of altijude:
0.31710%kg- m3, T, = 249K, M, =5, for the density, temperature, and Mach number
The molecular mass is.®3 102°kg and the viscosity exponent is 0.81 (VHS model).
This gives a Knudsen number of 0.236 at infinity.

For BGK, we use a mesh of 6050 cells in tangential and orthogonal directions. The
computational domain is restricted to the upstream flow; we have neglected the influenc
the flow downstream from the sphere. The velocity grid hag 91x 21 points in(vy, ¢, w)
directions. Since the distribution function is evemdsthis variable is in [Qr]. The bounds
of the grid forvx and¢ are [-230Q 2300]x [0,2000]. The velocity discretization of the
transport operator uses the T-UCE scheme, which has been proved in Section 6.2.1to k
best compromise between accuracy and robustness. The computation takes 137 itere
and 31 h CPU.

For the DSMC, we use the same mesh. Since the size of the cells is greater thar
mean-free-path, one cannot expect accurate results. The parameters of the method &
particles per cell, with a time step of 2-10s. After 136 iterations we make 500 samples
(one every three time steps). The maximum simulation time is reached in 1631 iterati
and 18 h CPU. Therefore, the CPU time is lower than for BGK, but it would be much long
to obtain more accurate results. A Navier—Stokes computation (without slip condition’
also made.

The results are shown in Figs. 11 and 12. The noisy contours obtained with DSMC
not surprising (Fig. 11). We also note that BGK contours are oscillating in the tail of ti
shock. This phenomenon also arises with Navier—Stokes results although it is less vis
This is a classical problem of structured meshes, which is due to the numerical viscosit
the scheme, because the streamlines are not aligned with the mesh. However, the rest
BGK and DSMC are quite close, which is not true for Navier—Stokes.

In Fig. 12, we plot density, temperature, and pressure profiles as functions of the ra
r along two lines orthogonal to the wall. One is the symmetry axis and the other one i
a 45 angle to this axis. For the first line, DSMC and BGK curves are quite close, exce
near the wall where there is a difference of approximately 20% for the temperature
the density. However, note that the difference between DSMC and Navier—Stokes is m
larger, especially for the temperature. For the line at &BMC and BGK are strikingly



462 LUC MIEUSSENS

TEMPERATURE PRESSURE

04 T T BGK T . 04 T T BGK

0.3

0.2

|/

-0.2 0.1 0

=

DSMC

0.4

0.34

s

0.2

0.1

0.0

T T T 1 .
-0.2 0.1 0 0.1

Navier—Stokes

0.4

Navier—Stokes
0.4 ; . : .

0.3 0.3

0.1 0.1

0.0

T T T T T 0.0 == T T
-0.2 -0.1 0 0.1 0.2 0.1

FIG.11. Axisymmetric flow past a sphere. Temperature and pressure contours for BGK, DSMC, and Navi
Stokes.
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FIG.12. Axisymmetric flow past a sphere. Density, temperature, and pressure profiles as funatiatenof
the symmetry axis and a line at45

close. To the contrary, we note a large difference between DSMC and Navier—Stokes. Tt
not surprising, since the local Knudsen number is found to be 0.6 in this zone. For instal
there is a difference of nearly 50% for the temperature in the shoel0(025 m).

One can estimate the gain obtained by using an axisymmetric computation instead
full 3D computation. For estimating the CPU cost of a 3D computation, we have compu
the same flow in 2D plane geometry, with a cylinder instead of a sphere and with the s
number of cells. A Cartesian computation requires a less precise velocity grid, so we
11x 11 x 11 discrete velocities (this is almost half as many discrete velocities as in t
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axisymmetric computation). The computation takes 194 iterations and 22 h CPU, whicl
of course faster than the axisymmetric case. For a 3D computation, assume that we w
use 50 cells in the-direction. Since our algorithms have a linear complexity, then we ca
assume that the 3D computation would be 50 times as long as the 2D plane case, w
yields 1100 h CPU. This must be compared to the 31 h CPU for the same result with
axisymmetric computation. Thus it is clear that despite the high cost of the discretizat
in w, the 2D axisymmetric method is much less expensive than a full 3D computation.

7. CONCLUSION

We have presented a new numerical method for BGK and BGK-ES equations. It
based on discrete-velocity models for the collision and transport operators, for plane
axisymmetric geometries, and on alinearized implicit scheme. Our discrete-velocity moc
satisfy important mathematical properties (conservation and entropy). They permit u:
have robust algorithms that do not require a fine velocity grid. Whereas these properties
not a necessary condition for high accuracy, they make it possible to yield plausible res
even with low-resolution velocity grids.

Our numerical results have been compared to the DSMC reference method. They |
been noted to be very close to the DSMC results for transitional flows, with a compara
CPU time. The BGK equation is a simplified model, but here it appears sufficient f
these flows, and the BGK-ES model allows for more physics. We have proved that
deterministic method is well suited for situations such as recirculation flows where t
DSMC method may be difficult to use. Our study on the axisymmetric transport opera
allows us to make simulations on 3D geometries with axial symmetry.

Moreover, due to the linear complexity of our algorithms, our method may be extend
to 3D nonaxisymmetric computations, without a prohibitive increase of the computatiot
cost. The explicit and implicit schemes of Sections 5.1 and 5.2 can be extended with
same properties. The only difference is that the blocks of the transport mgsee Fig. 1)
would be heptadiagonal instead of pentadiagonal. Thus the Gauss—Seidel method prog
in Section 5.2.2 to split the matrik should be modified.

Finally, we mention that an extension of our method to polyatomic gases is in preparati
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